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Abstract. We present a Monte Carlo study of the one-componentφ4 model on a cubic lattice
in three dimensions. Leading order scaling corrections are studied using the finite size scaling
method. We compute the corrections to scaling exponentω with high precision. We determine the
value of the couplingλ at which leading order corrections to scaling vanish. Using this result we
obtain estimates for critical exponents that are more precise than those obtained with field-theoretic
methods.

1. Introduction

The divergence of quantities like the correlation lengthξ or the magnetic susceptibilityχ in
the neighbourhood of a critical point is described by scaling laws

ξ ∝ t−ν χ ∝ t−γ (1)

wheret = |T − Tc|/Tc gives the distance from the critical point. However, such scaling laws
are valid in this simple form only in an infinitesimal neighbourhood of the critical temperature
on infinitely large systems. Monte Carlo simulations, however, are performed with finite
systems. Therefore the analysis of the resulting data requires knowledge of corrections to
scaling. A similar observation holds for experimental data of critical systems that are taken at
a finite distance from the critical temperature.

While renormalization group [1] (see also, e.g., [2]) predicts the structure of corrections
qualitatively, an understanding on a quantitative level is needed for the correct interpretation of
Monte Carlo or experimental data. Fromε-expansion, perturbation theory in three dimensions
and high-temperature series expansions we know that leading corrections are proportional to
ξ−ω, with ω ≈ 0.8 for the universality class of the three-dimensional Ising model [3–7]. The
systematical error that is quoted forω is about 1% to 5%. In a study [8] of universal amplitude
ratios of the Ising universality class the uncertainty of the estimate ofω turned out to be a
major source of systematic errors. Recent Monte Carlo simulations [9, 10] indicate that the
value ofω could be considerably larger than 0.8. Little is known about subleading corrections
to scaling.

In [6, 7] it was suggested that the study of models that interpolate between the Gaussian
model and the Ising model should be used to study leading order corrections to scaling. Such
models allow one to vary the amplitude of the corrections to scaling. In particular, they
allow one to eliminate leading order corrections by a suitable choice of the parameters of the
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action (Hamiltonian). This idea was recently implemented in the framework of Monte Carlo
simulations and finite size scaling [10,11].

In this paper we study the one-componentφ4 (or Landau–Ginzburg) model in three
dimensions on a simple cubic lattice. The action is given by

S =
∑
x

{
− 2κ

∑
µ

φxφx+µ̂ + φ2
x + λ(φ2

x − 1)2
}

(2)

where the field variableφx is a real number andx labels the lattice sites.µ labels the direction
andµ̂ is a unit-vector inµ-direction. The Boltzmann factor is exp(−S). Forλ = 0 we get the
Gaussian model on the lattice. In the limitλ = ∞ the Ising model is recovered. Following [11],
leading order scaling corrections vanish atλ = 1.0(1). The authors of [10] findλ ≈ 1.145.

The aim of the present study is threefold:

(1) We improve the accuracy of theλ at which leading order scaling corrections vanish. In
particular, we give error estimates for the value that is obtained.

(2) We obtain an accurate estimate of the correction exponentω. By simulating various values
of λ we are able to vary the strength of the leading order corrections.

(3) Finally simulations at the optimalλ yield accurate results for the critical exponentsν
andη.

In section 2 we discuss how corrections to scaling that arise from the crossover from the
Gaussian fixed point to the Wilson–Fisher fixed point can be studied by finite size scaling.
The Monte Carlo algorithm is explained in section 3. In section 4 we give an overview of the
simulations that have been performed. The analysis of the data is presented in section 5. In
section 6 we compare our results with the literature. Finally we give our conclusions and an
outlook.

2. Scaling corrections and finite size scaling

ε-expansion [3] tells us that leading corrections to scaling are related to the RG flow from the
Gaussian fixed point into the Wilson–Fisher fixed point. In Monte Carlo simulations of lattices
with finite sizeL the Binder cumulant

U(L, κ, λ) = 〈m
4〉

〈m2〉2 (3)

is the most natural quantity to monitor this flow. The magnetization is given bym =∑x φx .
Since we like to study the flow on the critical surface it is useful to consider a

second phenomenological coupling (i.e. a non-trivial quantity that is invariant under RG
transformations). We have chosen the ratio of partition functions with periodic and anti-
periodic boundary conditionsZa/Zp [12]. Note that partition functions are by construction
conserved under RG transformations. Therefore, the ratio of partition functionsZa/Zp is also
conserved.

Instead of computing the Binder cumulant atκc, it is computed at theκ such thatZa/Zp
takes a fixed value on the given lattice. The practical advantage of this method is that no errors
are introduced by an inaccurate estimate ofκc and that due to cross-correlations, the statistical
error of the Binder cumulant at fixedZa/Zp is smaller than that of the Binder cumulant at
fixed κ. In the following we will always fixZa/Zp = 0.5425, which is, according to [10], a
good approximation of

lim
L→∞

Za/Zp|κc . (4)
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The Binder cumulant at a fixed value ofZa/Zp = 0.5425 means:

Ū (L, λ) = U(L, κ̄(L, λ), λ) (5)

whereκ̄(L, λ) is determined by

Za/Zp(L, κ̄(L, λ), λ) = 0.5425. (6)

The fact that there exists a unique RG-trajectory running from the Gaussian fixed point
into the Wilson–Fisher fixed point leads to

Ū (L, λ) = f (a(λ)L) + b(λ)L−x + · · · (7)

where we expectx ≈ 2. The functiona(λ) goes to 0 asλ → 0. For some finite value
of λ leading order scaling corrections vanish anda diverges. Reparametrizing the scaling
functionf

f̃ (c(λ)L−ω) = f (a(λ)L) (8)

and Taylor-expanding yields

Ū (L, λ) = Ū ∗ + c1(λ)L
−ω + c2c1(λ)

2L−2ω + · · · . (9)

In addition to the leading correctionL−ω and powers of it we should expect that corrections
of orderL−2, L−4 and so on, which exist in the lattice version of the Gaussian model, also
survive in some form at the Wilson–Fisher fixed point. One example of such a correction is
the restoration of the rotational invariance. The result of [13] indicates that such corrections
exist almost unaltered at the Wilson–Fisher fixed point.

3. The Monte Carlo algorithm

We followed the idea of Brower and Tamayo [14] and used a combination of the cluster
algorithm and a local Metropolis algorithm for updating the field. We replaced the Swendsen–
Wang cluster algorithm [15] that was used by Brower and Tamayo with the recently proposed
wall-cluster algorithm [10]. The cluster algorithm only updates the sign of the fieldφ.
Ergodicity of the update scheme is reached by alternating the cluster update with Metropolis
updates that allow one to change the modulus of the fieldφ. Below we give the details of the
update schemes that were used.

3.1. Metropolis

In order to make the updating scheme ergodic we performed one Metropolis sweep in an update
cycle. The proposal for the sitex is generated by

φ′x = φx + s(r − 1
2) (10)

wherer is a random number uniformly distributed in(0, 1] ands parametrizes the size of the
change. In our study we have chosens = 3, yielding acceptance rates between 0.4 and 0.6,
depending onλ.

3.2. Over-relaxation

In order to speed up the updating of the modulus of the field we addedno over-relaxation
sweeps to the update cycle. A proposal for the field at sitex is generated by

φ′x = 2κ
∑
y·nn·x

φy − φx (11)
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wherey · nn · x means thaty is a nearest neighbour ofx. This proposal keeps

SGauss =
∑
x

[
− 2κ

∑
µ

φxφx+µ̂ + φ2
x

]
(12)

constant. This proposal is accepted if the demon variabled ∈ [0,∞) can take over the energy,
i.e. d ′ > 0 with

d ′ = d + λ(φ2
x − 1)2 − λ(φ′2x − 1)2. (13)

This means that we keep the combined actionScom = S + d constant.d is set equal to zero at
the beginning of the simulation and it is then updated only with the over-relaxation updates.

As a check of the program we measured the expectation value ofd:

〈d〉 =
∫ ∞

0
dx exp(−x)x = 1. (14)

For example, from our simulation withL = 96 atλ = 1.1 we obtained〈d〉 = 1.000 003(4).
The acceptance rate of the over-relaxation step depends onλ. Forλ = 0 the acceptance

rate is 1 by construction. Forλ = 1.1, where most of our simulations are done, the acceptance
rate is still 0.715.

3.3. Wall-cluster

We followed the idea of Brower and Tamayo and used the cluster-update only for updating
the sign of the fieldφ. For that purpose we consider the system as an Ising model with a link-
dependent coupling constant given byβ〈xy〉 = 2κ|φx ||φy |. This results in the link-dependent
delete probability

pd(x, y) = min[1, exp(−2β〈xy〉 sign(φx) sign(φy))] = min[1, exp(−4κφxφy)]. (15)

Given the delete probability there is still freedom in the choice of clusters to be flipped (i.e. the
fields of the cluster are multiplied by−1). In the Swendsen–Wang [15] algorithm clusters are
flipped with probability1

2. In Wolff’s [16] single-cluster algorithm the cluster that contains a
randomly chosen site of the lattice is flipped. Other rules for the selection of the clusters to
be flipped can be found in [17]. In this work we used the wall-cluster algorithm introduced
in [10]. In this case all clusters which intersect with a randomly chosen two-dimensional plane
of the lattice are flipped. In [10] we show that this version of the cluster algorithm is less
affected by critical slowing down than the single-cluster algorithm.

4. The simulations

We performed simulations at a large range ofλ values and lattice sizesL. In table 1 we give
an overview of the simulation parameters and the number of measurements for each set of
simulation parameters. Most of our simulations were performed on 200 MHz Pentium Pro
PCs running under Linux. The program is written in C. As random number generator we used
our own implementation of G05CAF of the NAG-library.

Per measurement we performed one Metropolis sweep, one or two over-relaxation sweeps
and four or seven wall-cluster updates. The last wall-cluster update in this sequence is also used
for the measurement of the boundary variable. The direction of the plane used for the wall-
cluster is taken from a fixed sequence. First perpendicular to the 1-direction, then perpendicular
to the 2-direction, and then perpendicular to the 3-direction and so on. The position of the
plane is chosen randomly.
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Table 1. Summary of simulation parameters. In the first row we give the value ofλ, in the second
row the lattice sizeL and in the third row the number of measurements divided by 3× 106.

λ L Stat/3× 106

0.1 6, 8, 12, 16, 24, 32, 48 6, 5, 5, 5, 4, 2, 1
0.2 6, 8, 12, 16, 24, 32, 48 6, 5, 5, 5, 4, 2, 1
0.4 6, 8, 10, 12, 14, 16, 18, 20, 24, 32 6, 5, 5, 6, 9, 6, 6, 5, 5, 2
0.7 2, 3, 4, 5, 6, 8, 12, 16, 24 6, 6, 6, 6, 6, 6, 7, 6, 7
0.8 2, 3, 4, 5, 6, 8, 12, 16, 24 6, 6, 6, 6, 6, 6, 5, 5, 5
0.9 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 10, 10, 10, 10, 30, 30, 20, 20, 20, 20, 20, 20
1.1 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 8, 8, 8, 25, 30, 30, 32, 30, 11, 10, 6, 6, 6,

16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 96 5, 5, 5, 5.5, 4, 6, 4, 2.5, 2.6, 1, 0.5
1.145 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 8, 8, 8, 8, 25, 30, 30, 30, 30, 11, 10, 6, 6,

15, 16, 18, 20, 24, 32, 48, 64 6, 5, 5, 6, 4, 3, 1.7, 0.5
1.3 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 10, 10, 10, 10, 30, 30, 20, 20, 20, 20, 20, 20
1.4 2, 3, 4, 5, 6, 7, 8, 12, 16, 24 6, 6, 6, 6, 6, 6, 6, 7, 6, 6
1.5 2, 3, 4, 5, 6, 7, 8, 12, 16, 24 6, 6, 6, 6, 6, 6, 5, 5, 5, 5
2.5 6, 8, 12, 16, 24, 32 6, 5, 5, 5, 4, 2

The update of a single site with Metropolis takes 2.0× 10−6 s and the over-relaxation
0.4× 10−6 s. The construction of one site of the cluster takes, on average, 4.5× 10−6 s.

We computed the integrated autocorrelation times of the observables that were measured.
For example, for our largest lattice sizeL = 96 atλ = 1.1 andκ ≈ κc, using one Metropolis
sweep, two over-relaxation sweeps and seven wall-cluster updates per measurement, we obtain
τχ = 3.56(2) andτb = 1.93(1) in units of measurements for the integrated autocorrelation
time of the magnetic susceptibilityχ and the boundary variable, respectively.

The average sum of the sizes of the clusters per volume that are flipped in one update
step are fitted with the ansatzS/V = CLx . We obtainS/V = 1.394(4)L−0.4874(7) taking into
accountL = 48, 64 andL = 96 forλ = 1.1 andκ ≈ κc. Theχ2/d.o.f . = 4.9 is rather large.
Taking onlyL = 64 andL = 96 yieldsS/V = 1.410(8)L−0.4901(14).

This result has to be compared withS/V = 1.008(4)L−0.527(1) that was found in [10] for
the standard Ising model on the cubic lattice. It seems that in the case of theφ4 model there
are rather strong corrections to the simple power law.

The simulations were performed atκs that were the best estimates ofκ̄ available at the
start of the simulations. In order to evaluate observables atκ values different fromκs we used
second-order Taylor expansion inκ atκs . We always checked that the error made by truncating
the Taylor series was well below the statistical error. The Taylor coefficients were obtained
from the simulations.

In total we used about 3.5 years of Pentium Pro CPU-time for these simulations. The runs
for λ = 1.1, which turned out to be close to the optimalλ, took about 570 days.

5. Analysing the data

5.1. The Binder cumulant and corrections to scaling

We analysed the Binder cumulant atZa/Zp = 0.5425 fixed in order to study corrections to
scaling and to find the value ofλ where leading order corrections to scaling vanish. To get a
first impression we have plotted our data forλ = 0.4, 0.8, 1.1, 1.5 and 2.5 for 56 L 6 24
in figure 1. Forλ = 0.4 andλ = 0.8, Ū is decreasing with increasing lattice sizeL. For
λ = 1.1 starting from aboutL = 10 the value ofŪ stays constant within error bars. Therefore
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Figure 1. The Binder cumulantU at Za/Zp = 0.5425 as a function of the lattice sizeL for
λ = 0.4, 0.8, 1.1, 1.5 and 2.5.

Table 2. Fit results for the Binder cumulant evaluated atZa/Zp = 0.5425 fixed. The ansatz
is given in equation (16). We give results for various minimal lattice sizesLmin and maximal
distancesdmax of Ū from its fixed point valueŪ∗. ω is the correction to scaling exponent.

Lmin dmax χ2/d.o.f. Ū∗ ω

8 0.06 5.36 1.603 51(8) 0.865(3)
8 0.04 2.45 1.603 00(8) 0.866(5)
8 0.03 2.06 1.602 86(8) 0.866(7)

12 0.06 2.02 1.603 98(13) 0.840(5)
12 0.04 1.43 1.603 70(14) 0.856(6)
12 0.03 1.21 1.603 44(15) 0.864(10)
16 0.06 1.85 1.604 35(20) 0.817(8)
16 0.04 1.31 1.603 79(22) 0.853(11)
16 0.03 1.18 1.603 62(23) 0.863(12)

the value ofλ at which leading order corrections to scaling vanish should be very close to 1.1.
Going toλ = 1.5 andλ = 2.5, the value ofŪ is increasing with the lattice size. For a given
lattice size,Ū is monotonically increasing with decreasingλ.

Next we analysed our data forŪ in a more quantitative fashion. In a first attempt we fitted
the data with the simple ansatz

Ū (L, λ) = Ū ∗ + c1(λ)L
−ω. (16)

Our fit results are summarized in table 2. The data which are included in the fit are determined
by two criteria. First, the lattice size has to be larger than a minimal lattice sizeL > Lmin.
Second, the distanced = |Ū (L, λ)− Ū ∗| has to be smaller than a maximal distanced 6 dmax .
The first criterion allows one to control effects of higher order corrections in general, while
the second specifically controls higher corrections that involve the same scaling field as the
leading correction (L−2ω, L−3ω, . . .).

The numbers forχ2/d.o.f. indicate that at leastLmin = 12 anddmax = 0.04 is required
to obtain a reliable fit. Results from the fits with aχ2/d.o.f. close to one giveω = 0.85 up
to 0.87 for the correction to scaling exponent. This value is clearly larger than that given by
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Table 3. Fit results for the Binder cumulant atZa/Zp = 0.5425 fixed. Compared with the previous
table a term proportional toL−2ω has been included into the ansatz (17).

Lmin dmax χ2/d.o.f. Ū∗ ω c2

8 all 3.08 1.603 18(8) 0.847(2) −1.01(2)
8 0.07 1.83 1.602 76(9) 0.847(3) −1.64(7)
8 0.05 1.94 1.602 77(9) 0.849(4) −1.57(15)

12 all 1.19 1.603 55(13) 0.839(5) −1.17(5)
12 0.07 0.95 1.603 28(15) 0.846(6) −1.57(10)
12 0.05 1.01 1.603 28(16) 0.846(6) −1.54(29)
16 all 1.02 1.603 63(21) 0.839(9) −1.31(10)
16 0.07 0.95 1.603 44(23) 0.845(11)−1.65(18)
16 0.05 1.02 1.603 36(26) 0.845(11)−1.97(48)

Table 4. The correction to scaling amplitudec1(λ) as a function ofλ from fits with the ansatz (17).
We give the results for three values ofLmin = 12, 14 and 16.dmax = 0.07 in all three cases.

λ Lmin = 12 Lmin = 14 Lmin = 16

0.1 1.452(44) 1.454(61) 1.465(81)
0.2 0.809(21) 0.810(28) 0.812(37)
0.4 0.3882(85) 0.387(12) 0.387(16)
0.7 0.1485(39) 0.1482(52) 0.1462(72)
0.8 0.0985(32) 0.0982(42) 0.0988(59)
0.9 0.0628(22) 0.0623(31) 0.0602(41)
1.1 0.0001(18) 0.0006(25)−0.0015(34)
1.145 −0.0116(16) −0.0128(22) −0.0139(31)
1.3 −0.0479(13) −0.0481(16) −0.0482(23)
1.4 −0.0684(18) −0.0686(19) −0.0739(30)
1.5 −0.0857(20) −0.0859(22) −0.0896(32)
2.5 −0.1933(28) −0.1934(36) −0.1944(49)
∞ −0.3112(39) −0.3113(58) −0.3125(76)

most recent field theoretic work [5].
Values forc1(λ) are not listed here. They will be discussed in more detail below.
In a second attempt, the data were fitted with the ansatz

Ū (L, λ) = Ū∗ + c1(λ)L
−ω + c2c1(λ)

2L−2ω. (17)

The additional term requires only one further parameter in the fit. Our results are summarized
in table 3. We note that, as expected, data with much larger values ofd = Ū − Ū∗ can be
included in the fit. The variation ofω with varyingLmin anddmax is considerably reduced
compared with the previous fit.

As our final result we quoteω = 0.845(10), where we take into account the variation of
the result withLmin anddmax .

For a small number of fits we give in table 4 the results forc1(λ). We see that for
λ = 1.1, within error bars, the leading corrections to scaling vanish. Converting the error bar
of c1(λ) to λ we getλopt = 1.100(7) fromLmin = 12,λopt = 1.102(8) fromLmin = 14, and
λopt = 1.095(12) fromLmin = 16. λopt is theλ where leading order corrections vanish.

In order to check the existence of the scaling function of equation (7), in figure 2 we have
plottedŪ for λ = 0.1, 0.2, 0.4, 0.7, and 0.8 as a function of

L′ =
(
c(λ)

c(0.1)

)−1/ω

L. (18)
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Figure 2. The Binder cumulantU atZa/Zp = 0.5425 as a function of the rescaled lattice size
L′ = a(λ)L for λ = 0.1, 0.2, 0.4, 0.7 and 0.8.

Table 5. Fits of the difference of the Binder cumulant atλ1 = 0.9 andλ2 = 1.3 with the ansatz
(20). We givedc = c1(λ1)− c1(λ2) and the correction to scaling exponentω.

Lmin χ2/d.o.f. dc ω

2 2.84 0.1149(7) 0.870(4)
3 2.83 0.1132(12) 0.862(6)
4 1.18 0.1078(18) 0.838(8)
5 1.26 0.1065(23) 0.833(11)
6 1.39 0.1076(28) 0.837(12)

The values forc are taken from table 4. We see that almost all data points fall nicely on a
unique curve. Only for the smallest lattice sizes that have been included (L = 6) is a small
deviation visible.

Finally, we studied differences of the Binder cumulant atZa/Zp = 0.5425 fixed for
different values ofλ. We define

1Ū(L, λ1, λ2) = Ū (L, λ1)− Ū (L, λ2). (19)

This wayŪ ∗ is cancelled and we expect

1Ū(L, λ1, λ2) = [c1(λ1)− c1(λ2)]L
−ω + · · · . (20)

As an example, we give in table 5 the results of fits forλ1 = 0.9 andλ2 = 1.3. The interesting
fact is that, starting fromLmin = 4, the data are already well fitted by the simple ansatz. Also,
the value forω obtained this way is compatible with the result obtained above. This means
that subleading corrections depend very little onλ and are, to a large extent, cancelled in1Ū .
Hence, there should be a good chance to study these corrections using perturbation theory.

Here we try to obtain a better understanding of the subleading corrections by looking at
the results for smallL at λ = 1.1 in more detail. Corrections to scaling vanish very rapidly.
Starting fromL = 9, the result for the Binder cumulant atZa/Zp fixed is consistent with̄U∗

within the error bars. Fitting

Ū (L)− Ū ∗ = cL−x (21)
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we findx ≈ 6± 1 when including lattices of sizeL = 4 up toL = 8. It is quite surprising
that the numerically dominant corrections are governed by such a large exponent and not, as
one might expect, byx ≈ 2.

The authors of [18] found that a correction term with a rather large exponent has to be
included into the fit ansatz in order to fit the Binder cumulant on small lattices. They suggest
that this correction exponent is given by 2yh, whereyh ≈ 2.48 is the RG exponent related with
the external field. To check this hypothesis we also looked at the corrections ofZa/Zp at κc.
It turns out that they vanish as rapidly as the corrections of the Binder cumulant. Hence the
observed corrections are related to an irrelevant RG exponent.

5.2. The critical lineκc(λ)

In order to obtain a result for the critical couplingκc we fitted our data for the ratio of partition
functionsZa/Zp with the ansatz

Za/Zp(L, κ, λ) = Za/Z∗p +
∂Za/Zp

∂κ
(κ − κc). (22)

For λ = 1.1 with Lmin = 12 we obtain the resultZa/Z∗p = 0.542 43(9) and 2κc =
0.375 0965(4). Increasing the minimal lattice size that is included in the fit toLmin = 16
we obtainZa/Z∗p = 0.542 44(14) and 2κc = 0.3750 966(4). In both casesχ2/d.o.f. is a little
larger than1

2.
The resultZa/Z∗p = 0.542 44(14) is consistent with previous estimatesZa/Z∗p =

0.543 34(26){27} from the standard Ising model andZa/Z∗p = 0.542 54(14)[6]{14} from
the spin-1 Ising model [10]. The numbers given in the second and third bracket are estimates
of systematic errors caused by subleading corrections. In this work we skipped a detailed
analysis of systematic errors. However, it is reasonable to assume that systematic errors are of
similar size as for the spin-1 Ising model. The estimate 2κc = 0.3750 966(4) for λ = 1.1 will
be useful in forthcoming studies of scaling laws.

For the other values ofλ we determinedκc from

Za/Zp +
∂Za/Zp

∂κ
(κc − κ) = 0.5425. (23)

The results are [0.1, 0.373 4095(13)], [0.2, 0.388 4251(14)], [0.4, 0.397 5837(13)], [0.7,
0.392 5302(20)], [0.8, 0.388 7757(21)], [0.9, 0.384 5113(36)], [1.145, 0.372 8926(7)], [1.3,
0.365 2233(33)], [1.4, 0.360 2789(19)], [1.5, 0.355 3854(21)], and [2.5, 0.313 4347(16)] for
the pairs [λ, 2κc].

5.3. The magnetic susceptibility

As definition of the magnetic susceptibility we used

χ = 1

L3

(∑
x

φx

)2

. (24)

Following [10,19], we tried to extract the exponentη from the magnetic susceptibility evaluated
at Za/Zp = 0.5425 or atU = 1.6034 fixed. In the following, the magnetic susceptibility
evaluated atZa/Zp or atU fixed is denoted bȳχ . We fitted our data with the ansatz

χ̄ (L) = c + d L2−η (25)

wherec is an analytic correction. Note that also corrections that decay likeL−x with x ≈ 2
are effectively parametrized by this ansatz.
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Table 6. Results forη from fitting the magnetic susceptibility atZa/Zp = 0.5425 fixed with the
ansatz (25).

Lmin χ2/d.o.f. η d c

4 25.05 0.0392(1) 0.9856(3) −0.724(4)
6 2.73 0.0371(1) 0.9789(4) −0.577(8)
8 1.23 0.0364(2) 0.9765(7) −0.504(18)

10 1.23 0.0361(3) 0.9755(9) −0.46(3)
12 1.33 0.0358(4) 0.9745(14) −0.40(7)
14 1.29 0.0357(5) 0.9740(18) −0.35(11)
16 1.00 0.0358(6) 0.9742(21) −0.35(17)

Table 7. Results forη from fitting the magnetic susceptibility atU = 1.6034 fixed with the ansatz
(25).

Lmin χ2/d.o.f. η d c

4 3.24 0.0345(2) 0.9701(5) −0.31(1)
6 1.24 0.0356(3) 0.9736(7) −0.38(1)
8 1.34 0.0359(4) 0.9744(12) −0.41(3)

10 1.28 0.0365(5) 0.9767(17) −0.50(6)
12 1.09 0.0370(7) 0.9784(25) −0.59(12)
14 1.02 0.0368(9) 0.9768(32) −0.45(20)
16 1.26 0.0366(10) 0.9768(39) −0.45(31)

Table 8. Results forη from fitting the magnetic susceptibility atZa/Zp = 0.5425 fixed with the
ansatz (26). Note that the ansatz (26) contains no term for analytic corrections.

Lmin χ2/d.o.f. η d

12 3.92 0.03357(15) 0.9670(4)
14 2.10 0.03431(18) 0.9688(5)
16 1.35 0.03467(22) 0.9700(7)
20 1.30 0.03497(28) 0.9710(9)
24 1.32 0.03534(37) 0.9724(13)
28 1.60 0.03545(43) 0.9728(15)

First we performed fits forλ = 1.1, where leading corrections to scaling vanish. Results
for variousLmin are given in table 6 forZa/Zp = 0.5425 fixed and table 7 forU = 1.6034
fixed. As before,Lmin gives the smallest lattice size that has been taken into account for the
fit. Theχ2/d.o.f. becomes about 1 forLmin = 8 for Za/Zp fixed, and forLmin = 6 for U
fixed.

As a check we performed fits without analytic partc for Za/Zp = 0.5425 fixed

χ̄ (L) = d L2−η. (26)

The results are summarized in table 8. Starting fromLmin = 28, the result forη becomes
consistent with the results obtained from the fitting equation (25) that includes analytic
corrections.

Finally we checked for systematic errors due to residual leading order corrections to scaling
at λ = 1.1. For that purpose we fitted the magnetic susceptibility atZa/Zp = 0.5425 for
λ = 0.4, 0.8, 1.5, and 2.5 withLmin = 6 using the ansatz (25). The results areη = 0.0493(4),
0.0407(6), 0.0353(5), and 0.0330(5) for the four values ofλ, respectively. From the results for
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Table 9. Fits of the derivative equation of the Binder cumulantU atZa/Zp = 0.5425 fixed. The
ansatz (29) is used. As results we give the exponent of the correlation lengthν and the constantc.

Lmin χ2/d.o.f. ν c/2

6 2.10 0.6289(1) −1.744(1)
8 1.70 0.6292(1) −1.748(2)

10 1.76 0.6293(2) −1.750(2)
12 1.48 0.6296(3) −1.753(3)
14 1.50 0.6299(3) −1.757(4)
16 1.76 0.6299(4) −1.756(6)

λ = 0.8 andλ = 1.5 we get the estimate
1ηeff

1λ
≈ −0.01 (27)

whereηeff denotes the numerical result forη obtained from fitting data for lattice sizesL = 6
up toL = 24.

From the previous section we know that the difference of 1.1 and the values ofλ where
leading order corrections vanish exactly should be smaller than 0.02. Therefore the systematic
error in our final estimate ofη due to residual leading order corrections should be smaller than
0.01× 0.02 = 0.0002. Note that the lattice sizes used to obtain our final result range from
L = 8 up toL = 96.

As a final estimate forη we take the result from fitting the magnetic susceptibility at
Za/Zp = 0.5425 with the ansatz (25) andLmin = 12:

η = 0.0358(4)[5]. (28)

The estimate of the systematic error is given in the second bracket. It is obtained from the
comparison with the ansatz (26) without analytic corrections and from the discussion above
onL−ω corrections.

5.4. The exponentν

We compute the exponentν from the slope of the Binder cumulant and the slope ofZa/Zp at
Za/Zp = 0.5425 fixed. We fitted our data forλ = 1.1 with the simple power law ansatz

∂U

∂κ
= cL1/ν . (29)

In table 9 we give our fit results for various values of the minimal lattice sizeLmin that is
included in the fit. Theχ2/d.o.f. becomes reasonably small forLmin = 12. Also, the result
for ν stays stable whenLmin is further increased.

In table 10 we give the analogous results for the slope ofZa/Zp. We see that theχ2/d.o.f.
are much larger than for the slope of the Binder cumulant. The value obtained forν is increasing
with increasingLmin.

Further, for the spin-1 Ising model the authors of [10] found that the slope of the Binder
cumulant is scaling much better than the slope ofZa/Zp.

Therefore, we take the result obtained from fitting the slope of the Binder cumulant with
Lmin = 12, ν = 0.6296(3) as our final result. In order to check for systematic errors due to
residualL−ω corrections we fitted our data for the slope of the Binder cumulant atλ = 0.4, 0.8,
1.5, and 2.5 withLmin = 8. We obtainedν = 0.6363(3), 0.6325(5), 0.6271(4), and 0.6241(4)
for the four values ofλ, respectively. Fromλ = 0.8 and 1.5 we obtain

1νeff

1λ
≈ −0.01. (30)
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Table 10. Fits of the derivative ofZa/Zp atZa/Zp = 0.5425 fixed. The ansatz (29) is used. As
results we give the exponent of the correlation lengthν and the constantc.

Lmin χ2/d.o.f. ν c/2

6 117.0 0.6254(1) −1.1524(4)
8 15.1 0.6273(1) −1.1673(5)

10 4.9 0.6281(1) −1.1742(7)
12 2.9 0.6286(1) −1.1794(12)
14 2.2 0.6290(2) −1.1830(15)
16 1.9 0.6292(2) −1.1858(20)

νeff here means the exponentν obtained from fitting lattices of sizeL = 8 up toL = 24 with
the simple power law equation (29).

From the previous section we know that the difference of 1.1 and the values ofλ where
leading order corrections vanish exactly should be smaller than 0.02. Therefore, the systematic
error in our final estimate ofν due to residual leading order corrections should be smaller than
0.01× 0.02 = 0.0002. Note that the lattice sizes used to obtain our final result range from
L = 12 up toL = 96. We arrive at the final result

ν = 0.6296(3)[4] (31)

where the second bracket gives an estimate of systematic errors. It is obtained from the
discussion on residualL−ω corrections and from the comparison of fits of the slope of the
Binder cumulant and of the slope ofZa/Zp.

6. Comparison with the literature

There exist exhaustive compilations of results for critical exponents in the literature: see, for
example, [5,18]. In table 11 we give only the most recent results, that reflect the state of the art.
In [10] the spin-1 model was simulated at parameters where leading order corrections vanish
(up to numerical uncertainties). The approach to compute critical exponents is very similar
to that of this paper. The results forν andη are consistent with the results of this study. The
error bars are of similar size. In [10] the authors found indications that the value ofω should
be larger than that obtained by field-theoretic methods. However, they were not able to give
reliable error estimates. Simulating theφ4 model at various values of the coupling constantλ

allowed us to vary the strength of the corrections to scaling. Therefore, we were able to give
a reliable error-estimate forω.

In [9] the standard Ising model was simulated. The authors also use finite size scaling
techniques to compute the exponents. In the analysis of the data, leading order corrections to
scaling are taken into account. The final result forν is perfectly consistent with our present
result. The error bars are a little larger than ours. The value forη is larger than ours but still
compatible when the statistical and systematical errors are taken into account. Their value for
the correction exponentω = 0.87(9) is consistent with ours but the error bar is nine times
larger than ours.

[9,10] as well as the present work employ finite size scaling methods that were pioneered
by Binder [20]. It seems to us that such an approach is more robust than the so-called Monte
Carlo renormalization group method [21]. Recent results by Gupta and Tamayo [22], using
lattices of a size up toL = 256, are inconsistent with our results. In particular their result for
the exponentν is by four times the error-estimate smaller than our result. On the other hand,
Blöteet al [23] give values that are consistant with ours.
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Table 11. Recent results for critical exponents obtained with Monte Carlo simulations (MC),
ε-expansion, perturbation theory in three dimensions (3D, PT) and high temperature series
expansions. When onlyν andγ are given in the reference we computedη with the scaling law.
These cases are indicated by∗. For a discussion see the text.

Reference Method ν η ω

This work MC 0.6296(3)(4) 0.0358(4)(5) 0.845(10)
[10] MC 0.6298(5) 0.0366(8)
[9] MC 0.6294(5)(5) 0.0374(6)(6) 0.87(9)
[22] MCRG 0.625(1) 0.025(6) ≈0.7
[23] MCRG 0.6309(12) 0.038(2)
[5] 3D, PT 0.6304(13) 0.0335(25) 0.799(11)
[5] ε, bc 0.6305(25) 0.0365(50) 0.814(18)
[5] ε, free 0.6290(25) 0.0360(50) 0.814(18)
[25] HT 0.6308(5) 0.0368(18)∗

[6] HT 0.632(1) 0.0388(32)∗ 0.854(80)∗

[7] HT 0.6300(15) 0.0365(56)∗ 0.825(50)∗

The ε-expansion was invented by Wilson and Fisher [3]. Most recent results obtained
from theε-expansion and from perturbation theory in three dimensions are given in [5]. The
results forν andη obtained from theε-expansion are in perfect agreement with our results.
However, the error bars are considerably larger than those now obtained from Monte Carlo.
The result forω is smaller than ours but still consistent within error bars. Parisi [4] proposed to
perform perturbative expansions directly in three dimensions (3D PT). The result given in [5]
for ν is consistent with ours. The value ofη is smaller than ours, but still within the quoted
error bars. In both cases our error bars are considerably smaller. The value of the correction
exponentω obtained from 3D PT [5] is considerably smaller than our result. The results are
inconsistent when the error bars that are quoted are taken into account.

The analysis of high-temperature expansions was the first theoretical method that produced
reliable, non-mean-field values for critical exponents of three-dimensional systems. For a
review of early work see [24]. Still this method gives results that are competitive in accuracy
with Monte Carlo and field-theoretic methods. The authors of [25] claim to have the most
accurate results obtained from high-temperature series expansions of the Ising model on the
bcc lattice. Their result forν is larger than ours. The quoted error bars do not overlap by a
small margin. The authors do not quote a value forη in their paper. For the convenience of
the reader we convertedγ = 1.2384(6) given for the exponent of the magnetic susceptibility
using the scaling relationη = 2− γ /ν. (Converting our numbers we getγ = 1.2367(11).)
One should note that in this workω as well asβc is taken as external input for the analysis.

We also give results obtained from the series expansion of two-parameter models that
interpolate between the Gaussian and the Ising model, similar to the model considered in this
paper. While the results of Nickel and Rehr [7] are in perfect agreement with our numbers (with
larger error bars) the value obtained by Chenet al [6] for ν is clearly larger than ours. Also the
valueγ = 1.237(2) obtained by Nickel and Rehr is consistent with ours, whileγ = 1.2395(4)
of Chenet al seems too large compared with our result.

The values obtained by Nickel and Rehr as well as by Chenet al for the correction to
scaling exponentω are consistent with our result. However, the error bars are considerably
larger than ours.

Further methods to compute critical exponents (‘exact RG’, ‘coherent anomaly method’,
etc) are discussed in the literature. These methods tend to give less accurate results and are
therefore not discussed here.
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Experimental results have been obtained for binary mixtures of fluids, vapour–fluid
systems and uni-axial (anti-)ferromagnetic systems. In general, the results agree with the
predictions yielded by the theoretical methods discussed above. However, the results for the
exponents are less accurate than the theoretical ones. To give only a few examples: the study
of the heat capacity of a aniline–cyclohexane mixture givesα = 0.104(11) [26]. Using the
scaling relationdν = 2− α we getν = 0.6320(37). A neutron scattering measurement of an
antiferromagnetic FeF2 system gaveν = 0.64(1) andγ = 1.25(2) [27]. For a large collection
of experimental results see [18].

7. Conclusion and outlook

In this study we determined with high precision the value of the couplingλ for which leading
corrections to scaling vanish. This allowed us to obtain results for critical exponents with an
accuracy better than that of field-theoretic methods.

The knowledge of the optimalλ can also be used for the study of other universal properties
of the model, e.g. universal amplitude ratios, the effective potential.

The programme to eliminate leading order corrections can also be applied to theφ4 model
with more than one component of the field. The case of two components is of particular interest
since it is supposed to be in the same universality class as superfluid helium systems. For this
system there exist experimental results forν [28] that are by far more accurate than the existing
theoretical predictions.

It would be desirable to extend the programme to subleading corrections. However, these
corrections are by far less well understood than leading corrections to scaling. Therefore it is
unclear how many and what kind of terms should be included into the action.

However, even if it is not possible to remove higher-order corrections to scaling completely
it would be a good check of the reliability of the results to redo the study with a different lattice
or with more than a next to nearest neighbour coupling.
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